

Proceedings of the 10th International
Conference on Systematic Approaches

to Digital Forensic Engineering

SADFE 2015

Carsten Rudolph
Nicolai Kuntze

Barbara Endicott-Popovsky
Antonio Maña

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 8

UFORIA - A FLEXIBLE VISUALISATION PLATFORM FOR
DIGITAL FORENSICS AND E-DISCOVERY

Arnim Eijkhoudt & Sijmen Vos
Amsterdam University of Applied Sciences

Amsterdam, The Netherlands
a.eijkhoudt@hva.nl, sijmenvos@gmail.com

Adrie Stander

University of Cape Town
Cape Town, South Africa
adrie.stander@uct.ac.za

ABSTRACT

With the current growth of data in digital investigations, one solution for forensic investigators is to
visualise the data for the detection of suspicious activity. However, this process can be complex and
difficult to achieve, as there few tools available that are simple and can handle a wide variety of data types.
This paper describes the development of a flexible platform, capable of visualising many different types of
related data. The platform's back and front end can efficiently deal with large datasets, and support a wide
range of MIME types that can be easily extended. The paper also describes the development of the
visualisation front end, which offers flexible, easily understandable visualisations of many different kinds
of data and data relationships.

Keywords: cyber-forensics, e-discovery, visualisation, cyber-security, computer forensics, digital forensics,
big data, data mining

!

1. INTRODUCTION

With the growth of data that can be encountered in
digital investigations, it has become difficult for
investigators to analyse the data in the time
available for an investigation. As stated by Teerlink
& Erbacher (2006) “A great deal of time is wasted
by analysts trying to interpret massive amounts of
data that isn’t correlated or meaningful without
high levels of patience and tolerance for error”.

Data visualisation might help to solve this problem,
as the human brain is much faster at interpreting
images than textual descriptions. The brain can also
examine graphics in parallel, where it can only
process text serially (Teerlink & Erbacher, 2006)

According to Garfinkel (2010), existing tools use
the standard WIMP model (Window, Icon, Menu,
Pointing device). This model is poorly suited to
representing large amounts of forensic data in an
efficient and intuitive way. Research must improve

forensic tools to integrate visualisation with
automated analysis, allowing investigators to
interactively guide their investigations (Garfinkel,
2010).

Many computer forensic tools are not ideally suited
for identifying correlations among data, or for the
finding of and visually presenting groups of facts
that were previously unknown or unnoticed. These
limitations of digital forensic tools are similar to the
forensic analysis of logs in network forensics. For
example, logs residing in routers, webservers and
web proxies are often manually examined, which is
a time-consuming and error-prone process (Fei,
2007). Similar considerations apply to E-mail
analysis as well.

Another issue with current tools is that they do not
always scale well and will likely have problems
dealing with the growth of data in digital
investigations (Osborne, Turnbull, & Slay, 2010).

Currently, there are few affordable tools suited to

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 9

and available for these use-cases or situations.
Additionally, the available tools tend to be
complex, requiring extensive training and
configuration in order to be used efficiently.

Investigative data visualisation is used to assist
viewers with little to no understanding of the
subject matter, in order to reconstruct a crime or
item and to understand what is being presented, for
example an investigator which is not familiar with a
particular scenario. On the other hand, analysis
visualisations can be used to review data and to
assess competing scenario hypotheses for
investigators that do have an understanding of the
subject matter (Schofield & Fowle, 2013).

A timeline is a valuable form of visualisation, as it
greatly assists a digital forensic investigator in
proving or disproving a hypothetical model
proposed for the investigation. A timeline can also
provide support for the mandate the digital forensic
investigator received prior to commencing the
investigation (Ieong, 2006). Interaction between
role players can normally also be shown in network
diagrams, so that the combination of a timeline and
network diagram can generally answer many who
and when answers.

The aspects of what and where can often be
answered by examining the contents of evidence
items, such as E-mails or the positional data of
mobile phone calls. It is therefore important to be
able to display the details of data with ease as well.

 This paper describes the development of a flexible
platform, Uforia (Universal Forensic Indexer and
Analyser), that can be used to visualise many
different types of data and data relations in an easy
and fast way.

The platform consists of two sections, a back end
and a front end, and is based on readily available
open source technologies. The back end is used to
pre-process the data in order to speed up the
indexing and visualisation process handled by the
front end. The resulting product is a simple and
extremely flexible tool, which can be used for
many types of data with little or no configuration.
Very little training is needed to use Uforia, making
it accessible and usable for forensic investigators
without a background in digital investigations or
systems, such as auditors.

2. ADVANTAGES

Uforia offers many advantages, of which the first is
very low cost.

A second advantage is that the system scales well
due to its use of multiprocessing and distributed
technologies such as ElasticSearch, so that
extremely large numbers of artefacts can be
handled in a very short time. The processing of the
Enron set, consisting of roughly 500 000 E-mails
without attachments, typically takes less than ten
minutes to complete on contemporary consumer-
grade hardware. This pre-processing step also
ensures that little to no processing needs to be done
at the time of visualisation.

Thirdly, the Uforia's development heavily focused
on making it as user- and developer-friendly as
possible. Many forensic tools need a substantial
amount of training and configuration to accomplish
meaningful tasks. As this makes the systems
difficult and expensive to use and develop for, it
was considered paramount during Uforia's
continued development to address these issues.
Although a full UX study has not been conducted
yet, the UI and feature set was developed using
mock-ups and feedback from UX- and graphical
designers, as well as potential users from several
fields of expertise, such as process, compliance and
risk auditors, forensic investigators and law
enforcement officers, where none of the
participants were given prior usage instructions.

Another advantage is the extreme flexibility of the
system. It is very easy to add new modules, e.g. for
handling new MIME types, as the programming of
such a module can normally be accomplished in a
very short time using simple Python programming.
Additionally, the front end is completely web
based, and no special software needs to be installed
to use it. This, combined with the following
common web design and UX standards, suggests
that even novice users can achieve meaningful
results with little to no training.

3. BACK END

3.1 START-UP PHASE

Uforia's back end is used to process the files
containing the data that will eventually be indexed
and used in the visualisation process.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 10

The back end's first step is to create a MySQL table
for the files. This table contains all metadata
common to any digital file, as well as calculated
metadata (such as NIST hashes).

A second database table is then generated, and it
contains information about the supported MIME
types. This table is built by looking at a
configurable directory containing the modules for
the MIME types that can be handled by the system.

Every module that can handle a specific MIME
type is identified and added to this table. The table
eventually contains zero, one or more 1:n key/value
pairs for each of the supported MIME types and
their respective module handlers. The module
handlers are themselves stored as key/value pairs,
with their original name as keys to the matching
unique table name.

These tables are then created for each module, so
that Uforia can store the returned, processed data
from each particular module in its unique table.

Modules are self-contained files and extremely easy
to develop. They only require the structure of their
database table to be stored as a simple Python
comment line in the particular module, starting with
TABLE: …, and a predefined process function
which should return the array of the data to be
stored.

3.2 PROCESSING

Once all tables are created, the processing of the
files that need to be analysed can start.

The first step is to build a list of the files involved.
This is read from the config file. Once this list is
completed, every file in the list is processed.

The MIME type of the file is determined and then
the relevant processing modules (0, 1 ... n) are
called to process the file. The results returned by
each module are then stored in the database table
that was generated earlier for that particular
module.

When Uforia encounters a container format, it can
deal with it efficiently by recursively calling itself.
For instance, the Outlook PST module will unpack
encountered PST files to a temporary directory and
then call Uforia recursively for that temporary
location. The unpacked individual E-mails are then
automatically picked up by the normal E-mail

module and processed accordingly.

Uforia can also deal efficiently with flat-file
database(-like) formats by having modules return
their results as a multi-dimensional array. Uforia's
database engine turns these into multiple-row
inserts into the appropriate modules' tables.
Examples of modules that deal with flat-files in this
fashion, are the modules that handle the mobile
phone data (CSV-format) and the simple PCAP-file
parser.

Due to its highly-threaded operation, the back end
can pre-process large volumes of data efficiently in
relatively little time. Once the processing steps are
completed, the stored data needs to be transferred
from the back end storage in JSON-format to the
ElasticSearch engine for use by the visualisation
front end.

4. FRONT END

The front end uses ElasticSearch, AngularJS and
D3.js for the visualisation and administration
interface.

The first step during the visualisation process is to
select the modules or file types that need to be
visualised in the admin interface.

The next step is to select (and possibly group any
identical) fields that need to be indexed by the
ElasticSearch engine. The administration interface
will hint at similar field names in other supported
data types to allow for the merging of data types
into one searchable set. This makes it possible to
correlate the timing of e.g. cell phone calls and E-
mails.

During or after the indexing and storing in
ElasticSearch, one or more visualisations must then
be assigned to the mapping in the admin interface.
This also includes specifying the fields that should
be laid out on the visualisation's axes.

The data in ElasticSearch can then be searched and
visualised, even if the index process has not been
completed yet. Because the front-end uses
ElasticSearch, searches are fast and highly scalable.
Only when full detail views of selected evidence
items are necessary, the underlying back-end
database needs to be accessed.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 11

5. USER INTERFACE

The interface is designed with the goal of
optimizing user-friendliness and ease of
understanding. The user interface sports a
'responsive design', with UI elements automatically
resizing and repositioning themselves for different
screen sizes, such as with laptops, tablets and
mobile phones, as can be seen in Figure 1.

Figure 1: Mobile Interface

1) The user selects an 'evidence type', which
is the name used for the collection, as it
was generated in the admin interface

2) Uforia then loads the module fields that
have been indexed for that evidence type,
e.g. 'Content' for E-mails or documents.

3) The user selects whether the field should
'contain[s]' or 'omit[s]' the information in
the last field.

4) Finally, the user selects one of the
visualisations that have been assigned to
the evidence type.

5) Uforia will now render the requested
information using the selected
visualisation, with some of the
visualisations offering additional
manipulation (such as a network graph).
Lastly, all visualisations have one or more
'hot zones' where the user can 'click-
through' to bring up a detailed view of the
selected evidence item(s).

6. EXAMPLES

In this section, an examples can be seen of how
Uforia is can be used to quickly determine the E-
mail contacts of suspects. Despite limited available
space in this paper, it is nevertheless possible to
recreate similar scenarios for other data types.

Figure 2 shows an example set of a network graph
derived from a sample set of PST-files, where the
E-mail content was searched for the words
'investigate', 'books', 'suspect' or 'trading' and shown
as a network graph indicating which individuals
communicated about these words, with the size of
the node indicating the amount of communication
received. This immediately indicates the links
between several possible suspects, including one
whose PST mailbox was not included in the dataset
and processed by Uforia.

Figure 2: Network Graph

Another example is creating a timeline, as seen in
Figure 3, to determine when messages were sent
and which were sent around the time of the possible
transgression.

 It is easy to determine the times of the E-mail
messages by hovering over the intersections on the
timeline, and to investigate the original E-mails by
clicking on the intersections (see Figure 4).

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 12

Figure 3: Timeline

The timeline visualisation can handle multiple
items like calls from a large number of mobile
phones. Figure 4 shows anonymised data from a
real case, illustrating how contacts and time can
easily be determined. The horizontal axis indicates
the flow of time, while the graph nodes and
coloured lines indicate the moment of contact
between the two phone numbers. By clicking on the
intersections, the original data can once again be
displayed.

Figure 4: Mobile Phone Timeline

7. CONCLUSION

Uforia shows that it is possible to create a simple,
user-friendly product that is nevertheless powerful
enough to use in the most demanding
investigations.

It is easy to extend if any new MIME types are
encountered or new features are needed.

Uforia was tested on a number of real life
scenarios, and in all cases it was able to produce
real results in a fast and efficient way, requiring
hardly any operator training.

In conclusion, Uforia is fast, flexible and low cost
solution for investigating large volumes of data.

REFERENCES

Fei, B. K. (2007). Data Visualisation in Digital
Forensics. Pretoria, South Africa: Maters
Dissertation, University of Pretoria.

Garfinkel, S. L. (2010). Digital forensics research:
The next 10 years. Digital Investigation,
64-73.

Ieong, R. S. (2006). FORZA - Digital forensics
investigation Framework that incorporate
legal issues. Digital Investigation(3), 29-
34.

Osborne, G., Turnbull, B., & Slay, J. (2010). The
‘Explore, Investigate and Correlate’ (EIC)
conceptual framework for digitalforensics
Information Visualisation. International
Conference on Availability, Reliability and
Security, (pp. 630 - 634).

Schofield, D., & Fowle, K. (2013). Visualising
Forensic Data : Evidence (Part 1). Journal
of Digital Forensics, Security and Law,
Vol. 8(1), 73-90.

Teerlink, S., & Erbacher, R. F. (2006). Foundations
for visual forensic analysis. 7th IEEE
Workshop on Information Assurance.
Westpoint, NY: IEEE.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 13

DYNAMIC EXTRACTION OF DATA TYPES IN ANDROID’S
DALVIK VIRTUAL MACHINE

Paulo R. Nunes de Souza, Pavel Gladyshev

Digital Forensics Investigation Research Laboratory,
University College Dublin, Ireland

ABSTRACT

This paper describes a technique to acquire statistical information on the type of data object that goes into
volatile memory. The technique was designed to run in Android devices and it was tested in an emulated
Android environment. It consists in inserting code in the Dalvik interpreter forcing that, in execution time,
every data that goes into memory is logged alongside with its type. At the end of our tests we produced
Probability Distribution information that allowed us to collect important statistical information that made us
distinguish memory values between references (Class, Exception, Object, String), Float and Integer types.
The result showed this technique could be used to identify data objects of interest, in a emulated
environment, assisting in interpretation of volatile memory evidence extracted from real devices.

Keywords: Android, Dalvik, memory analysis.

1. INTRODUCTION

In digital forensic investigations, it is sometimes
necessary to analyse and interpret raw binary data
fragments extracted from the system memory,
pagefile, or unallocated disk space. Event if the
precise data format is not known, the expert can
often find useful information by looking for human
readable ASCII strings, URLs, and easily
identifiable binary data values such as Windows
FILETIME timestamps and SIDs. Figure 1 shows
an example of a memory dump, where a
FILETIME timestamp can be easily seen (a
sequence of 8 random binary values ending in 01).
To date, the bulk of digital forensic research
focused on Microsoft Windows platform, this paper
describes a systematic experimental study to find
(classes of) easily identifiable binary data values in
Android platform.

Figure 1: Hexadecimal view of a memory dump

2. BACKGROUND

Traditional digital forensics relies on evidences
found in persistent storages. This is mainly due to
the need to both sides of the litigation to reproduce
and verify every forensic finding. The persistent
storage can be forensically copied, providing a
controllable way to repeat the analysis, getting to
the same results.

An alternative way is to combine the traditional
forensics with the so called live forensics. The live
forensics relies on evidences found in volatile
memory to draw conclusions. This type of evidence
features a lesser level of control and repeatability if
compared with traditional evidences. On the other
hand, live evidences may unravel key information
to the progress of a case. However, the question
regarding the reliability of the live evidence
remains in place, mainly in two moments: the
memory acquisition and the memory analysis.

In the memory acquisition front, law enforcements
and researchers are working to establish standard
procedures to be used. These procedures could be
based on physical or logical extraction. The
physical extraction could need disassembling of the
device or the use of JTAG as done by Breeuwsma

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 14

[2006]. The logical extraction can be more diverse,
from interacting with the system with user
privileges as done by Yen et al. [2009]; it could
also gain system privileges through a kernel
module as done by Sylve et al. [2012]; even use a
virtual machine layer to have free access to the
memory like done by Guangqi et al. [2014], among
others. Regardless of the extraction method, there
will be the need to analyse the extracted data.

One challenge faced when analysing a memory
dump is that application data is stored in memory
following the algorithms of the program owning
that memory space. Being aware of the variety of
software running on nowadays devices, the task of
interpreting the device’s extracted memory is
complex. Some researchers are tackling this
challenge taking different approaches. Volatility
[2015] provides a customizable way to identify
kernel data structures from memory dumps; Lin et
al. [2011] used graph-based signatures to identify
kernel data structures, Hilgers et al. [2014] uses the
Volatility framework to identify structures beyond
the kernel ones, identifying static classes in the
Android system.

A deeper memory analysis tool that would
consistently interpret data structures from
application software has not yet being developed.
The in-depth memory analysis is normally done in
a adhoc basis, interpreting the memory dump from
the light of the reversed engineered application’s
source code, as done by Lin [2011]. A broader
approach, that would not depend on the
application’s source code, could be powerful to
deep memory analysis.

This approach, not based on the application source
code, would have advantages and disadvantages.
As an advantage, this approach could be used in
situations where the source code is unknown,
unavailable, or legally disallowed to be reversed
engineered. On the other hand, without the source
code to deterministically assert the meaning of each
memory cell, this method would need to take a
probabilistic approach. The foundation for such
approach is a probabilistic understanding of the
memory data associated with their respective type.
This paper uses the Android OS as environment to
present a technique to gather the memory
information associated with its type, making
possible to have an probabilistic understanding of

that data.

3. ANDROID STRUCTURE

The Android OS is an Operating System based on
Linux, with extensions and modifications,
maintained by Google. The OS was designed to run
on a large variety of devices sharing same common
characteristics [Ehringer, 2010]: (1) limited RAM;
(2) little processing power; (3) no swap space; (4)
powered by battery; (5) diverse hardware; (6)
sandboxed application runtime.

Figure 2: Architecture of Android OS

To provide a system that could run on such diverse
and resource limited devices, they decided to build
a multi-layered OS(Figure 2). The 5 layers are: (1)
Linux kernel; (2) Hardware Abstraction Layer
(HAL); (3) Android runtime and Native libraries;
(4) Android framework; (5) Applications.

The Android OS is an hybrid of compiled and
interpreted system. The boundary between
compiled and interpreted execution is the Android
runtime. The versions of the Android used in our
experiments (android-2.3.6 r1 and android-4.3
r2.1) feature Dalvik Virtual Machine (Dalvik VM)
in the runtime package. All the programs running in
the layers underneath Dalvik VM are compiled and
all programs running in the layers above Dalvik
VM are interpreted. The Dalvik VM hosts
programs that were written in a Java syntax,
compiled to an intermediary code level called
bytecode and then packed to be loaded into Dalvik.
When the software is launched inside Dalvik VM,
each line of bytecode is interpreted into the
machine code, normally in ARM architecture.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 15

The Dalvik VM is implemented as a registerbased
virtual machine. This mean that the instructions
operate on virtual registers, being those virtual
registers memory positions in the host device. The
instruction set provided by the Dalvik VM consists
of a maximum of 256 instructions, being some of
them currently unused. Part of the used instructions
is type specific, being those the ones chosen to be
used to collect data and type information.

The Dalvik VM instruction set is grouped in some
categories: binop/lit8 is the set of binary operations
receiving as one of the arguments a literal of 8 bits;
binop/lit16 is the set of binary operations receiving
as one of the arguments a literal of 16 bits;
binop/2addr is the set of binary operations with
only two registers as arguments, being the result
stored in the first register provided; binop is the set
of binary operations with three registers as
arguments, two source registers and one destination
register; unop is the set of unary operations with
two registers as arguments, one source register and
one destination register; staticop is the set of
operations that perform over static object fields;
instanceop is the set of operations that perform
over instance object fields; arrayop is the set of
operations that perform over array fields; cmpkind
is the set of operations that perform comparison
between two floating point or long; const is the set
of operations that move a given literal to a register;
move is the set of operations that move the content
of a register to another register.

Each of those categories has a number of
instructions specifically designed to operate over
some data type. The whole instruction set
distinguishes 12 data types, namely: (1) Boolean;
(2) Byte; (3) Char; (4) Class; (5) Double; (6)
Exception; (7) Float; (8) Integer; (9) Long; (10)
Object; (11) Short; (12) String.

4. MODULAR INTERPRETER (MTERP)

As the Android OS is open source, the source code
of the OS [Google, 2015], including the Dalvik
VM, is available to be downloaded and modified.
By inspecting the Dalvik VM source code in
details, it was possible to identify that the
interpreter2 would be a strong candidate to host the

2 The interpreter is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp

data collecting code. The features that most suit our
needs are: (1) there is an different entry for each
bytecode instruction, called opcode; (2) several of
the opcodes of the Dalvik VM are type related.
Therefore, it is a good point to place the code
designed to collect the data, relating values and
types that goes to memory.

Even though the Dalvik interpreter is conceptually
the central point from where every single line of
Dalvik bytecode should pass through, there is one
exception. The Android OS features an
optimization element called Just In Time (JIT)
compilation that can bypass the Dalvik interpreter
[Google, 2010]. The JIT compiler is designed to
identify the most demanded tracks of code that run
over the Dalvik VM. After identified, those tracks
would be compiled and, next time they were
demanded, the JIT would call the compiled track,
instead of calling the interpreter. This way, the code
we use to collect our data would not be executed
and the collected data would not be accurate.

JIT configuration # of instructions logged
WITH JIT = true 2,676,540
WITH JIT = false 3,643,739

Table 1: Number of instructions logged during the
Android booting process

In our tests, the JIT compiler would skip, on
average, 26.5% of the type bearing instructions
during the Android booting process(Table 1). To
avoid this source of error, it was necessary to
deactivate the JIT compiler on our test Android OS.
The Android system contains an environment
variable WITH JIT that is used to deploy an
Android system with or without JIT. In order to
deactivate the Just In Time compilation, we edited
the makefile Android.mk3 and forced the WITH
JIT to be set to false.

Having deactivated the JIT, it is necessary to insert
the logging code into the interpreter. The interpreter
source code is put together in a modular fashion,
for this reason it is called modular interpreter
(mterp). For each target architecture variant there
will be a configuration file in the mterp folder4. The

3 The Android.mk is located on the following directory of the
Android source tree: /android/dalvik/vm
4 The mterp folder is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 16

configuration will define, for each Dalvik VM
instruction, which version of ARM architecture will
be used and where the corresponding source code is
located. In order to log all the designed instructions,
several ARM source code files, scattered in the
mterp folder, will need to be edit accordingly, and
any extra subroutine could be inserted in the file
footer.S. After all the codes are edited, it is required
to run a script called rebuild.sh, located in the
mterp folder, that will deploy the interpreter5.
Finally, the Android system, that will contain the
modified interpreter, need to be built.

When executing the deployed Android OS, the data
extraction takes place. The extracted data is stored
in a single file with one entry per line as shown in
Listing 1. The key information we can find in each
entry are the two last columns, containing the type
and the hexadecimal value stored in memory.

Listing 1: Unprocessed log sample

D(285:298) Object = <0x41a1fc68>
D(285:298) Int = <0x00034769>
D(285:298) Object = <0x41a1fc68>
D(285:298) Int = <0x00011db5>
D(285:298) Byte = <0x2f>
D(285:298) Int = <0x00000000>
D(285:298) Int = <0x0000002f>
D(285:298) Char = <0x2f>

Having this file, we process it to separate one data
type on each file and exclude any extra information
apart from the hexadecimal value, as depicted in
the Figure 3.

5 The interpreter is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp/out!

Figure 3: Log processing

Summing up, to extract the memory values
associated with their respective types we needed to
do the following:

• deactivate the JIT Compiler from an
Android OS;

• inject code in the Dalvik Interpreter to log
types and values on each interpreted
typebearing instruction ;

• run the adjusted Android OS to collect data
on the logs;

• process the logged data;

The deactivation of the JIT compiler and the
modification in the Dalvik interpreted code,
expectedly, generated an execution overhead.
Considering the average booting time, the logging

procedure seems to have effected more the
response time than the JIT deactivation. The Table
2 shows the average booting times with and without
JIT, as well as with and without the logging code.

 Log = off Log = on

WITH JIT = true 62s 2176s
WITH JIT = false 62s 3026s

Table 2: Average booting time in seconds

5. RESULTS

Having all the processed logs, it was possible to
extract some statistical information from them. The
Table 3 shows in what proportion each type appear

Log
Processing mterp.log

Android
Emulator

Boolean.log

Byte.log

. . .

String.log

Extraction

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 17

in the logs. The table makes clear that the Int type
prevail over the other types, with 54.3% of the
appearances. Other types with a rather common rate
of occurrence are Byte (8.17%), Char (13.19%) and
Object (24.00%). The remainder of the types have a
percentage lower than 1%.

Type # of occurrences % of total
Bool 6,512 0.1787%
Byte 297,578 8.1668%
Char 444,163 12.1898%
Class 1,454 0.0399%
Double 836 0.0229%
Exception 168 0.0046%
Float 6,374 0.1749%
Int 1,978,652 54.3028%
Long 7,837 0.2151%
Object 874,196 23.9917%
Short 3,034 0.0833%
String 22,935 0.6294%
Total 3,643,739 100.0000%

Table 3: Booting time in seconds

At this point, the 32-bit types are being highlighted.
They are: (1) Class; (2) Exception; (3) Float; (4)
Integer; (5) Object; (6) String. Each of those 6
types have its own probability distribution of values
plotted on the Figure 4.

From the distributions it is possible to spot the
similarity among the types: (1) Class; (2)
Exception; (3) Object; (4) String. All 4 of them
have a predominant peak a little after the value
0x4000000. This similarity can be explained by the
fact that those 4 types are indeed references,
therefore, pointers to a memory address. If focusing
only on the values around 0x40000000, the Float
type could be confused with the reference ones,
because it also displays a peak around 0x40000000,
however a much broader one, moreover, it has an
second lower peak around 0xc0000000. The Int
type displays occurrences along the whole spectrum
of values, featuring two more relevant peaks. One
peak around 0x00000000 and the other peak around
0xffffffff. Those two peaks could be explained by
an greater occurrence of integer with small absolute
values, being them of positive and negative signal,
respectively.

Figure 4: Probability distribution of values by 32-
bit type (Log scale)

6. CONCLUSION

This paper explained a technique to capture
memory data along with their corresponding data
type in an emulated Android OS. This technique
required deactivation of the optimization process
called Just In Time compilation and the
modification of the interpreter ARM code. The
technique creates an expected overhead on the
Android execution time. As this technique was only
designed to run in emulated Android, this overhead
is not an issue. The technique allowed us to collect
important statistical information that made us
distinguish memory values between references
(Class, Exception, Object, String), Float and Integer

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 18

types. Beyond this specific test case, this technique
could be use to build an statistical data corpus of
Android memory content. This data corpus may
become a tile on the work of paving the ground to
the development of a consistent deep memory
analysis tool.

7. ACKNOWLEDGEMENTS

This work was supported by research grants (BEX
9072/13-6) from Science Without Borders
implemented by CAPES Foundation, an agency
under the Ministry of Education of Brazil.

REFERENCES

Ing. M.F. Breeuwsma. Forensic imaging of
embedded systems using JTAG (boundary-scan).
Digital Investigation, 3 (1):32 – 42, 2006. ISSN
1742-2876. doi:
http://dx.doi.org/10.1016/j.diin.2006.01.003.

David Ehringer. The dalvik virtual machine
architecture, 2010.

Google. Google i/o 2010 - a jit compiler for
android’s dalvik vm. Google Developers, May
2010. URL www.youtube.com/watch?v=Ls0tM-
c4Vfo. Accessed 6th March 2015.

Google. Android source code repository. repo,
2015. URL https://android.googlesource.com/
plataform/manifest. Accessed 11th February
2015.

Liu Guangqi, Wang Lianhai, Zhang Shuhui, Xu
Shujiang, and Zhang Lei. Memory dump and
forensic analysis based on virtual machine. In
Mechatronics and Automation (ICMA), 2014
IEEE International Conference on, pages
1773–1777, Aug 2014. doi:
10.1109/ICMA.2014.6885969.

C. Hilgers, H. Macht, T. Muller, and M.
Spreitzenbarth. Post-mortem memory analysis
of cold-booted android devices. In IT Security
Incident Management IT Forensics (IMF),
2014 Eighth International Conference on,
pages 62–75, May 2014. doi:
10.1109/IMF.2014.8.

Zhiqiang Lin. Reverse Engineering of Data
Structures from Binary. PhD thesis, CERIAS,
Purdue University, West Lafayette, Indiana,
August 2011.

Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang,
Dongyan Xu, and Xuxian Jiang. Siggraph:
brute force scanning of kernel data structure
instances using graph-based signatures. In 18th
Annual Network & Distributed System Security
Symposium Proceedings, 2011.

Joe Sylve, Andrew Case, Lodovico Marziale, and
Golden G. Richard. Acquisition and analysis of
volatile memory from android devices. Digital
Investigation, 8(34):175–184, 2012. ISSN
1742-2876. doi:
http://dx.doi.org/10.1016/j.diin.2011.10.003.

Volatility. The volatility framework, 2015. URL
http://www.volatilityfoundation.org/. Accessed
18th March 2015.

Pei-Hua Yen, Chung-Huang Yang, and TaeNam
Ahn. Design and implementation of a live-
analysis digital forensic system. In
Proceedings of the 2009 International
Conference on Hybrid Information
Technology, ICHIT ’09, pages 239–243, New
York, NY, USA, 2009. ACM. ISBN 978-1-
60558-662-5. doi: 10.1145/1644993.1645038.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 1

Proceedings of the 10th International Conference on
Systematic Approaches to Digital Forensic Engineering

The SADFE series feature the different editions of the International Conference on
Systematic Approaches to Digital Forensics Engineering. Now in its tenth edition, SADFE
has established itself as the premier conference for researchers and practitioners working
in Systematic Approaches to Digital Forensics Engineering.

SADFE 2015, the tenth international conference on Systematic Approaches to Digital
Forensic Engineering was held in Malaga, Spain, September 30 – October 2, 2015.

Digital forensics engineering and the curation of digital collections in cultural institutions
face pressing and overlapping challenges related to provenance, chain of custody,
authenticity, integrity, and identity. The generation, analysis and sustainability of digital
evidence require innovative methods, systems and practices, grounded in solid research
and understanding of user needs. The term digital forensic readiness describes systems
that are build to satisfy the needs for secure digital evidence.

SADFE 2015 investigates requirements for digital forensic readiness and methods,
technologies, and building blocks for digital forensic engineering. Digital forensic at SADFE
focuses on variety of goals, including criminal and corporate investigations, data records
produced by calibrated devices, as well as documentation of individual and organizational
activities. Another focus is on challenges brought in by globalization and cross-legislation
digital applications. We believe digital forensic engineering is vital to security, the
administration of justice and the evolution of culture.

Carsten Rudolph, Nicolai Kuntze,
Barbara Endicott-Popovsky, Antonio Maña

ISBN: 978-84-608-2068-0

